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Abstract. A new method is proposed for asymptotic analysis of power series. In the method 
we use the relation that an n-term power series of a singular quantity with critical exponent 
j3 behaves asymptotically like n-@ at the phase transition point. The method is tested on 
known series with satisfactory results and used to analyse the power series of the two- 
dimensional three-state Potts model of Enting, in good agreement with den Nijs’ conjecture. 

1. Introduction 

The series expansion methods are some of the most powerful tools for investigating 
phase transitions in different physical systems (for a review see Domb and Green 
1974). To determine the different series (high and low temperature, density, strong 
and weak coupling, 1/N, etc) several effective methods have been developed (Domb 
and Green 1974, Nickel 1981) and also many powerful procedures are known for their 
asymptotic analysis (for a review see Gaunt and Guttmann 1974). The common feature 
of these analysing methods (ratio method, Pad6 approximants, ff-point fits, etc) is 
that the properties of the singularity are determined from the behaviour of the power 
series in the vicinity of the singularity point. 

In this paper we propose a new method, which concentrates on the properties of 
the series just at the phase transition point. It is easy to show that in nth order of the 
expansion a singular quantity characterised by a p critical exponent at the phase 
transition point asymptotically behaves as n-@. This relation is used in this paper to 
develop a procedure for asymptotic analysis of power series. The method in some 
respects is analogous to finite-size scaling (for a review see Barber 1983), since by the 
latter method the scaling form of a physical quantity at the phase transition point as 
a function of the linear size of the system is used to determine the critical parameters. 

The layout of the paper is as follows. Section 2 contains the description of the 
method, while in 0 3 several power series are analysed. To test the accuracy of the 
method the magnetisation, the specific heat and the susceptibility series of the one- 
dimensional transverse Ising model (TIM) at T = 0 and that of the two-dimensional 
Ising model are analysed. As a further application, the magnetisation and the specific 
heat series of the two-dimensional three-state Potts model (Enting 1980) is evaluated 
and found to be in much better agreement with den Nijs’ (1979) conjecture, compared 
with previous estimates. Finally, 0 4 contains a short discussion and a comparison is 
given with other methods. 

t Permanent address: Central Research Institute for Physics, H-1525 Budapest, PO Box 49, Hungary 
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2. Description of the method 

Let the physical quantity M = M ( x )  have a power law singularity at x = xo, the phase 
transition point: 

M (  x)  = A( 1 - t) [ 1 + b,( 1 - t) + . . .] (x + xo). 

(In the following we have p 
more, suppose that there exists the power series of M ( x )  in the vicinity of x = 0: 

0, and for p < 0 the inverse of M ( x )  is taken.) Further- 

For large values of i the ai coefficients can be approximated by the 

p p ( p  - 1 ) .  . . ( p  - i + l )  
( i ) =  i!  

binomial coefficients, which may be expressed as (Luke 1975) 

where T(x) is the gamma function. 
Now let us form the nth partial sum of the M ( x )  quantity: 

Obviously, 

i f x = x o  (" finite otherwise. 
lim M(")(x)= 
n +cc 

(2.3) 

(If M ( x )  is the magnetisation, then limn+m M'"'(x) = 0 for x 2 xo.) Using equation 
(2.4) the asymptotic form of M'"'(x0) can be determined at the phase transition point: 

Here b ( P )  = (1 - p ) / 2 ,  and B(n) is related to the form of the confluent singularity: 

When the confluent singularity is additive, i.e. S = 1, then B ( n )  = b, and it is possible 
to arrange M'"'(xo) in a series with integer powers of n-'. 

From the practical point of view it is useful to make the expression (2.7) continuous 
by a A(n) shift in the n variable: 

(Strictly speaking, in the exponent of this expression a factor ( n  log U ) - '  appears 
instead of a-'. However, the two expressions give practically the same results, even 
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for moderately large values of n.) According to equation (2.9) the log M'"'(x,) against 
log(n+A(n)) plot is asymptotically a line with slope p. Furthermore, the mean 
deviation of the points from the line is the least when the coefficient of the l / n  term 
vanishes: 

b ( P )  + B ( n )  - A ( n )  = O .  (2.10) 

The relation (2.9) is true for relatively small values of n, as is seen in figure 1,  where 
the latent heat of the TIM is plotted. (The series of the latent heat in this case is defined 
as the difference of the slopes of the strong and weak coupling series for the ground 
state energy at the phase transition point (see equation (3.4).) In this simple case, 
when the confluent singularity is additive, so are the points, even for n 2 2 fairly close 
to the 

- log L(") = log 77 + log( n +a)  (2.11) 

line, which describes the exact asymptotic behaviour (Pfeuty 1970, Igl6i et a1 1986). 
From the expression (2.11) one can read p = 1 - a = 1; thus the specific heat exponent 
a =o.  

In the following, by making use of equation (2.9), we propose a procedure to obtain 
quantitative results for the critical parameters. Suppose that the first N terms of the 
(2.5) series are known and 1 S n, s n2 S N. Then the following expressions are defined: 

(2.12) 

where n = n,, n ,  + 1 , .  . . , n 2 -  1 .  (In some cases it is useful to compare the odd and 
even partial sums separately.) In the next step a P ( n , ,  n J + n - ' y ( A ( n , ,  n 2 ) )  line is 
fitted to the b(n, A ( n ) )  points by the least squares method. The value of A(n,, n2)  is 
fixed by the requirement y(A*(n,, n 2 ) )  = O .  This equation allows us to determine the 
form of the confluent singularity through equations (2.8) and (2.10). The critical 

Figure 1. A log L'"' against log(n +a) plot for the TIM. The full line represents the exact 
asymptotic behaviour given by equation (2.1 1 ) .  
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exponents obtained in this way only slightly depend on n ,  and n2,  and generally the 
following relation applies: 

C 
IP(n1, n2) - P I  = (n,n2)( l+s) /2  ( 2 . 1 3 )  

where c / P  c< 1. In the next section this method is used to evaluate some power series. 

3. Application of the method 

In this section the method is first tested on known series, and then the low temperature 
expansion for the two-dimensional three-state Potts model (Enting 1980) is analysed. 

The magnetisation expression for the TIM is a simple power law (Pfeuty 1970, 
Hamer and Kogut 1979): 

M = (1 - x-*)"*. (3.1) 

Therefore the ratio method predicts the exact critical parameters: x,, = 1, P = i. The 
results of the scaling method for xg = 1, x i  = 1.001 and x i  = 0.999 are given in table 1 

Table 1. Estimated values for the magnetisation exponent of the TIM.  

( a )  At the critical point x i  = 1. 

n1 2 3 4 5 

1 0.126 76 0.12644 0.12622 0.12607 
2 0.125 88 0.125 73 0.125 63 
3 0.125 52 0.125 45 
4 0.125 35 
5 
6 
7 

6 7 8 

0.125 95 0.125 86 0.125 79 
0.125 56 0.125 50 0.125 46 
0.125 39 0.125 35 0.125 32 
0.125 30 0.125 27 0.125 24 
0.125 25 0.125 22 0.125 20 

0.125 19 0.125 17 
0.125 14 

( b )  At x;=1.001. 

1 0.12538 0.12485 
2 0.123 93 
3 
4 
5 
6 
7 

~~ ~ 

0.12444 0.12409 0.123 79 0.123 51 0.123 26 
0.123 56 0.123 25 0.122 96 0.122 70 0.122 45 
0.123 02 0.122 71 0.122 43 0.122 16 0.121 91 

0.122 29 0.122 00 0.121 73 0.121 48 
0.121 64 0.121 36 0.121 10 

0.121 03 0.120 76 
0.12044 

( c )  At x i  = 0.999. 

1 0.128 16 0.128 05 0.128 04 0.128 09 0.128 17 0.128 27 0.128 38 
2 0.127 86 0.127 95 0.128 08 0.128 23 0.128 39 0.128 55 
3 0.128 09 0.128 27 0.128 45 0.128 65 0.128 84 
4 0.128 50 0.128 72 0.128 94 0.129 16 
5 0.129 00 0.129 23 0.129 47 
6 0.129 53 0.129 78 
7 0.130 09 
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for N=8.  It is easily seen that at the critical point, even for this short series, the 
calculated p ( n , ,  n2) values are close to the exact value, and relation (2.13) is also 
applicable with c=O.Ol. Repeating the calculation by one thousand, far from the 
critical point, as is seen in table 1 ,  the p ( n , ,  n2) values vary quickly with increasing 
n, and n2; they tend to zero above the critical point and tend to infinity below it. By 
this method, from this short series, the critical point and the critical exponent may be 
estimated within errors 0.0001 and 0.001, respectively. 

For the next example the specific heat exponent of the TIM is evaluated. The strong 
coupling series for the ground state energy is exactly known (Pfeuty 1970, Igl6i et a1 
1986): 

m 

E,= - c ai(x-2)' 
i = O  

where 

i = 1,2, . . . 
k = l  

(3.2) 

(3.3) 

ao= 1 .  

The specific heat exponent is determined from the series of the latent heat (Igl6i et a1 
1986): 

(3.4) 

using the fact that L(x)ccx ' -"  in the vicinity of the critical point. The calculated 
1 - (Y = p (  n,, n2)  exponents are given in table 2 for N = 7. Now the critical exponent 
may be estimated within 0.001 error. Furthermore, b, = 0.25 * 0.01 is found to be in 
good agreement with the exact value of the strength of the additive confluent singularity: 
b, = f .  

The susceptibility series of the TIM is not known exactly and therefore the eight-term 
series of Hamer and Kogut (1979) is used in the analysis. The odd and even terms of 
this series behave differently; therefore we compare these separately. The calculated 
values, given in table 3, also show oscillation. Thus the y exponent can be estimated 
with a relatively larger error: y = 1.75 * 0.005. 

Table 2. Estimated values for the 1 - (I exponent of the TIM at the critical point. The exact 
value is a = O .  

*2 

"1 2 3 4 5 6 7 

1 1.01272 1.01030 1.00871 1.00758 1.00673 1.00607 
2 1.00600 1.00499 1.00429 1.00377 1.00338 
3 1.003 49 1.002 98 1.002 60 1.002 32 
4 1.00228 1.001 98 1.001 76 
5 1.001 61 1.001 42 
6 1.001 19 
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Table 3, Estimated values for the susceptibility exponent of the TIM at the critical point. 
The exact value is y = 1.75. 

n2 

n1 3 4 5 6 7 

1 1.7530 1.7437 1.7434 1.7430 1.7434 
2 1.7287 1.7369 1.7391 1.7408 
3 1.7490 1.7458 1.7460 
4 1.7416 1.7446 
5 1.7483 

To analyse high and low temperature series we choose as test examples the 
magnetisation, the internal energy and the susceptibility series of the two-dimensional 
square lattice Ising model: 

00 

M = 1 - b i d  

U =  C i U i  

x = I +  C aiui. 

i = l  

cc 

i s 1  

m 

i = l  

(3.5) 

Here, due to self-duality, U may ,e a igh temperature (U = tanh(PJ)) or low tem- 
perature (U = exp( -2pJ)) expansion parameter. The coefficients of these series are 
taken from the review article of Domb (1974) and the specific heat exponent is calculated 
from the relation 

U(u)- 1-3'" (3.6) 

where U (  uo) = -42 (Domb 1974). 
The calculated P(nl, N )  values for 2 s  n, s N -  1 are given in table 4, where for 

the latent heat and the susceptibility series the nl[P( n,, N )  - Pexaa] quantity is also 
given in parentheses. It is easily seen that the magnetisation and the specific heat 
exponents obtained by the scaling method are very accurate, as may be found by other 
methods (Gaunt and Guttmann 1974), but the susceptibility series is less regular. 
Therefore the accuracy of the estimation in this case is smaller. 

Finally the low temperature series of the partition function and the order parameter 
(magnetisation) of the two-dimensional three-state Potts model (Enting 1980) is 
analysed. The specific heat exponent in this case is also determined from the internal 
energy series by using equation (3.6) with U( uo) = - (1 - 3-"*) (Kihara et al 1954). 

These series are non-regular and oscillatory. Therefore the calculated 1 - a (  n,, N) 
and P(nl, N) values, given in the first column of tables 5 and 6, respectively, also 
show large oscillations. These large deviations can be decreased if the following 
averaged quantities are used in the (2.12) relation: 

PI( n, A) =f[b( n - 1, A )  + b( n, A )  + b( n + 1, A)] 

P A n ,  A) = % b l ( n  - 1, A )  + P , ( n ,  A) + P l ( n  + 1, A)]. 

(3.7) 

(3.8) 

and 
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Table 4. The P ( n , ,  N) estimates for the magnetisation, the 1 - a, and the susceptibility 
exponents of the square lattice k ing  model. The exact values of the exponents are the 
same as those of the TIM. The nr[j3(n,, N)-Pe, , , , ]  quantities are given in parentheses. 

____ ~~ ___ 

n1 Magnetisation Latent heat Susceptibility 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.124 83 
0.124 87 
0.12490 
0.124 92 
0.12493 
0.12494 
0.12494 
0.12495 
0.124 95 
0.12496 
0.124 96 
0.12496 
0.12497 
0.124 97 
0.12497 
0.124 97 
0.12497 
0.12498 

0.9923 (0.0155) 
0.9927 (0.0219) 
0.9952 (0.0192) 
0.9966 (0.0172) 
0.9974 (0.0155) 
0.9979 (0.0145) 
0.9983 (0.0138) 
0.9985 (0.0133) 
0.9987 (0.0130) 
0.9988 (0.0127) 
0.9990 (0.0125) 
0.9991 (0.0123) 
0.9991 (0.0122) 
0.9992 (0.0121) 
0.9993 (0.01 19) 
0.9993 (0.01 18) 

1.7274 (0.0452) 
1.7350 (0.0450) 
1.7375 (0.0501) 
1.7398 (0.0508) 
1.7408 (0.0552) 
1.7422 (0.0548) 
1.7428 (0.0575) 
1.7436 (0.0575) 
1.7441 (0.0593) 
1.7446 (0.0593) 
1.7449 (0.0610) 
1.7453 (0.0607) 
1.7455 (0.0626) 
1.7459 (0.0618) 
1.7460 (0.0646) 
1.7463 (0.0626) 
1.7460 (0.0716) 

Exact 0.125 1 .o 1.75 

Table 5. Estimates for the 1 -a exponent of the two-dimensional three-state Potts model. 
The values in the second and third columns were calculated by using the averages in 
equations (3.7) and (3.81, respectively. The last row contains the averages of the values 
in rows 11-23. 

11 0.6796 
12 0.6734 
13 0.65 18 
14 0.6881 
15 0.6497 
16 0.6715 
17 0.6823 
18 0.6468 
19 0.6932 
20 0.6558 
21 0.6634 
22 0.6949 
23 0.6368 
24 0.7006 
25 0.6669 
26 0.6322 

0.6726 0.6732 
0.6659 0.6700 
0.6668 0.6689 
0.6674 0.6667 
0.6596 0.6648 
0.6683 0.6650 
0.6635 0.6634 
0.6655 0.6660 
0.6710 0.6664 
0.6607 0.6662 
0.6710 0.6683 
0.6649 0.6655 
0.6618 0.6677 
0.6733 0.6670 
0.6537 0.6645 
0.6673 0.6691 

Average 0.6682 0.6661 0.6671 
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Table 6. Estimates for the magnetisation exponent of the two-dimensional three-state Potts 
model. The values in the second and third columns were calculated in the same way as 
in table 5. 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

0.1105 
0.1107 
0.1077 
0.1125 
0.1079 
0.1103 
0.1108 
0.1081 
0.1117 
0.1090 
0.1095 
0.1119 
0.1076 
0.1122 
0.1098 
0.1077 
0.1 I78 

0.1097 
0.1093 
0.1095 
0.1100 
0.1091 
0.1102 
0.1094 
0.1097 
0.1101 
0.1093 
0.1 101 
0.1097 
0.1095 
0.1104 
0.1089 
0.1101 
0.1095 

0.1093 
0.1094 
0.1095 
0.1095 
0.1095 
0.1097 
0.1095 
0.1098 
0.1097 
0.1097 
0.1099 
0.1097 
0.1099 
0.1099 
0.1097 
0.1101 
0.1095 

The calculated exponents now behave more regularly, as is seen from the results given 
in the second and third columns of tables 5 and 6. The 1 - a(n , ,  N )  values do not 
show a systematic trend with n,. Therefore their average is a reasonable estimate for 
the critical exponent: 

(3.9) 
The calculated magnetisation exponents p(  n,, N )  show smaller deviations, but they 
are systematically increasing with n,. The estimated value is 

/3 =0.1105*0.001. (3.10) 
These estimates for the a and p exponents are in excellent agreement with den Nijs' 
(1979) conjecture: a =$  and p =8. We note that earlier analysis of these series by 
other methods predicted far less accurate exponents (Enting 1980, Zwanzig and 
Ramshaw 1977, Miyashita er af 1979). 

a = 0.333 * 0.004. 

4. Discussion 

In this paper a scaling method is proposed for asymptotic analysis of power series. 
According to the basic equation (2.7) of the method, the estimate for the critical 
exponent in the nth step is 

p y  = - log M'"' -log M ( " - , )  
log n - log(n - 1) 

which can be written for large n as 

(4.1) 

p y  == - 6 log M ( n )  
Slog n ' 

(4.2) 
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The same quantity in the ratio method (Gaunt and Guttmann 1974) is 

This behaves for large n as 
6 log(GM(n)/Gn) 

6 log n 
p y  z - - 1. 

(4.3) 

(4.4) 

In the case of the D log Pad6 approximation (Gaunt and Guttmann 1974) we have 

6 log M'"'(x) 
X'XO 6 log(x, - x)  ' 

PE'  = lim 

Now supposing that M'"'(x,) = M(x,), and x, satisfies xo-x, - n-', then 

P E ' = -  6 log M(n) 
6 log n ' 

(4.5) 

(4.6) 

Comparing (4.2), (4.4) and (4.6) one can conclude that the scaling method is related 
to the D log Pad6 method. Both methods determine the critical exponents from the 
first derivative of the series, while the ratio method uses the second derivative. 

To compare the accuracy of the scaling method with other procedures some standard 
trial series with known singularities (Hunter and Baker 1973) are analysed. These 
series are given in table 7 .  Following Hunter and Baker (1973), the parameter 

E,  =-log,, - (29 (4.7) 

by which an estimate of the critical exponent using n terms of the series is determined, 
where AB, is the amount by which the series differs from the exact value Pexacr. The 
results of the calculation are summarised in table 8, for n = 10, 15 ,  20, together with 
those obtained by Hunter and Baker (1973) by other methods. It is seen that the 
accuracy of the scaling method for these series is comparable with the Dlog  Pad6 
analysis and generally superior to the ratio method. Concerning the problem of the 
analysis of a series with logarithmic confluent singularity (series L ) ,  we can say that 
the scaling method is also unable to give a reasonable estimate for the critical exponent. 
However, the type of the confluent singularity may be accurately determined. 

Finally we may conclude that the scaling method can be applied with success for 
oscillating non-regular series, as was shown in the example of the three-state Potts 
model. Another promising field is the analysis of series where the coefficients contain 
some noise. The uncertainties on the coefficients make the analysis more difficult by 
standard methods, but by taking partial sums these uncertainties are somehow washed 
out (Dekeyser 1985). Another important field of application of the method seems to 
be the first-order transitions, which is discussed in a separate paper (Igl6i er a1 1986). 

Table 7. Functions given by Hunter and Baker (1973) used in this paper to study the 
relative accuracy of the scaling method. 
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Table 8. The relative accuracy of the scaling method ( S )  compared with the results obtained 
(Hunter and Baker 1973) by the ratio method (R),  Neville extrapolation (N)  and Pad6 
approximants (P). The parameter E ,  given by equation (4.7) is tabulated for n = 10, 15, 20. 

_____ ~~~ ~ ~ 

Number of 
Series terms S R N P 

10 
C 15 

20 

10 
G 15 

20 

10 
K 15 

20 

10 
L 15 

20 

2.2 1.3 1.8 1.7 
2.6 1.5 3.6 2.4 
3.0 1.6 5.4 3.1 

1.2 1.3 0.8 
1.5 1.4 1.1 
2.4 1.5 2.0 

1.6 0.7 1.4 
1.9 1.2 2.0 
2.5 1.4 2.5 

0.8 0.5 0.8 0.8 
0.8 0.6 0.9 0.9 
0.9 0.7 0.9 0.9 
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